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Scaling properties of conductance at integer quantum Hall plateau transitions
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We investigate the scaling properties of zero-temperature conductances at integer quantum Hall plateau
transitions in the lowest Landau band of a two-dimensional tight-binding model. Scaling is obeyed for all
energy and system sizes with critical exponentn' 7

3 . The arithmetic average of the conductance at the
localization-delocalization critical point is found to be^G&c50.506e2/h, in agreement with the universal
longitudinal conductancêsxx&5

1
2 e2/h predicted by an analytical theory. The probability distribution of the

conductance at the critical point is broad with a dip at smallG. @S0163-1829~98!01532-X#
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The transitions between the integer quantum Hall~IQH!
plateaus are believed to be a manifestation of the localiza
to delocalization transition in two-dimensional electron s
tems in the presence of a strong magnetic field. T
phenomenon1 is characterized at finite temperatures by t
appearance of a conductance peak as the Hall conduct
varies continuously between the precisely quantized va
with the change of applied magnetic field.1 The existence of
both extended and localized states is required to describe
fascinating phenomenon. Following extensive experime
and theoretical investigation, a consistent picture
emerged on the nature of this remarkable transition. In a
dimensional disordered noninteracting electron system,
tended states do not exist as a result of Anderson localiza
except at a singular energy near the center of each of
Landau subbands.2,3 The localization length diverges at the
critical energies asj;uE2Ecu2n, signifying a continuous
zero-temperature quantum phase transition. Electron con
tion close to the transition is controlled by the ratio of t
coherent length over the localization length.4 As the system
size increases or, equivalently, as the temperature decre
to zero for macroscopic samples, the system scales to s
Hall insulator fixed points characterized by (sxx ,sxy)
5(0,n)e2/h.

Although a consensus has been reached on the ge
picture, several fundamental issues remain unsolved.
such issue, the universality of the transition, has attrac
much attention recently.5 Based on Chern-Simons forma
ism, Kivelson, Lee, and Zhang6 predicted a transition be
tween quantized plateaus (sxx ,sxy)5(0,n)e2/h and (0,n

11)e2/h with universal critical points (12 ,n1 1
2 )e2/h, inde-

pendent of the microscopic details of any models. Such u
versality at the quantum critical point has also been s
gested previously.5 The universality of the critical exponent
appears to have been borne out in all the latest nume
studies with different microscopic models.2,3,7,8These works
produced values consistent with experimental meas
ment9–11 and close to the analytical predicted value12 n5 7

3

for quantum percolation. The universality ofsxx , however,
is still controversial. Extrapolation of dynamical conducti
ity from Kubo formalisms8 and from spectra function
calculations7 on short-ranged potentials produced values
reasonable agreement withsxx

c 5 1
2 at the critical point. A
PRB 580163-1829/98/58~7!/3576~4!/$15.00
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recent extensive and direct numerical study13 on mesoscopic
systems with the network model,2 however, producedGc

5(0.5860.03)e2/h, in disagreement with the analytical pre
diction and previous numerical results. Given the fact t
the two-terminal conductanceG is not exactly the same a
the longitudinal conductivitysxx , the small but significant
difference appears to be resolved13 in favor of a new univer-
sal value for the two-terminal conductanceGc. Experimental
attempts14 to measure the conductance directly have not p
duced consistent values.

Unlike the Hall conductance, which is exactly quantiz
as a consequence of topological invariance, the longitud
conductance itself is a sample-dependent quantity for me
copic systems with electron coherent lengths exceeding
sample dimension. The universality of the critical condu
tance in principle applies only to macroscopic systems
which self-averaging is expected. It is not clear at the pres
what average procedure will produce the experimentally
served quantity. Fluctuation has been the hallmark of qu
tum transport in mesoscopic systems15 and its characteristics
provide important clues on the system as a whole. It is the
fore equally interesting to investigate the probability dist
bution of the conductance. In particular, it is important to a
whether, under appropriate conditions, the distribution of
conductanceP(G) approaches a limiting universal form. I
three-dimensional disorder-driven metal-insulator tran
tions, strong evidence exists on the universality of the c
ductance distribution in the metallic and insulating phases
well as at the critical point.16,17 The physical arguments fo
the existence of such a universality can be equally applie
the localization-delocalization transition in two-dimension
systems.13,18 Conductance distributions at IQH plateau tra
sitions have been investigated for the network model onl19

The results compared well with the recent experimental m
surement on mesoscopic systems.20

In this paper, we investigate the scaling properties of
conductance as well as the critical conductance and its
tribution in a two-dimensional system described by a tig
binding model. This is perhaps the simplest system that
hibits the correct critical behavior of the localization
delocalization transition. To our knowledge, no su
calculations have been previously reported for the tig
binding model. Our aim is to determine accurately the cr
cal zero-temperature two-terminal conductance in the tig
3576 © 1998 The American Physical Society
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binding model and to see whether there is universality
least between the tight-binding model and the netw
model investigated by Wanget al.13 Our results are in agree
ment with the scaling hypothesis and a critical exponen
n5 7

3 . More importantly, based on finite size scaling ana
sis, we obtain̂ Gc&50.506 at the critical point, very close t
the value expected from analytical theoryGc5 1

2 , but in dis-
agreement with the recent extensive numerical study on
network model.13 This difference, if it persists, has importa
implications on the universality of the two-terminal critic
conductance. We have also analyzed the distribution of
conductance at the critical point. The moments of the dis
bution are surprisingly similar to that of the network mod

The tight-binding Hamiltonian is given as follows:

H5(
i

e i u i &^ i u1(̂
i j &

~ t i j u i &^ j u1c.c.!, ~1!

wheree is a random site energy uniformly distributed with
@2W/2, W/2#. The complex hopping integralt i j carries the
phase due to applied magnetic fields via the standard Pe
substitution,

t i j 5t0expS 2
i2pe

hc E
i

j

AW •d lW D . ~2!

The sum is carried over the nearest-neighbor sites^ i j & only.
t0 is taken as the unit of energy. Periodic boundary con
tions are applied in the transverse direction. In continuu
quantized Landau levels under a magnetic field are bro
ened into Landau bands by impurity scattering. In latt
models, Landau bands form even in ordered systems
result of degeneracy breaking. These bands will be furt
broadened by disorder. The lowest Landau band in the ti
binding model has been shown1 to describe the quantum Ha
transition well.

To calculate the zero-temperature two-terminal cond
tance numerically, we employ the transfer matrix meth
which obtains the final transmission matrix by multiplic
tions and inversions of transfer matrix. The disorder
square sample of sizeM3M is sandwiched between tw
perfect leads of the same width. Both the sample and
leads are governed by the tight-binding Hamiltonian~1!. No
disorder exists in the leads. The two-terminal conductanc
then given by the following multichannel Landau
formula:21

G5
e2

h
Tr~T†T!, ~3!

whereT is the total transmission matrix through the diso
dered sample with the propagating channels in the lead
basis. Keep in mind thatG defined here is for one spin only

For the purpose of investigating the scaling and the c
cal conductance, we have chosen a fixed magnetic field s
that the flux per square is one-eighth of the flux quant
( f 51/8) and a disorder strengthW54. If universality per-
sists, both the critical exponentn and the critical conduc-
tance^Gc& are expected not to depend on the applied fi
and the disorder strength. Based on a previous finite
t
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scaling study22 on the localization length, the critical point o
the lowest Landau level at this field and disorder strength
accurately known to be atE523.40. At this disorder, all
Landau bands show substantial band mixing except the l
est one. For disordered mesoscopic systems at zero tem
ture, electrons propagate through the entire sample with
being scattered inelastically by phonons. Scattering by r
dom static impurity, on the other hand, produc
configuration-dependent conductance fluctuations.
present in Fig. 1~a! the averaged conductance^G& in the
lowest Landau band for different system sizes. The cond
tance clearly peaks at the critical energyEc523.40 and falls
rapidly away fromEc . As the system size increases, t
conductance curve become narrower and the peak con
tance increases. The continuing narrowing of the width
the conductance curve as system size increases indicate
in the macroscopic limit, only the states at the critical ene
can transport electrons across the sample, in agreement
the conventional picture that all states are localized excep
the center of the band.1

An important property is the scaling of the conductanceG
as a function of the system size. According to the finite s
scaling idea, the conductance is expected to be determ
solely by the ratio of the localization length to the syste
dimensionM close to critical point. However, there is know
irrelevant finite size corrections such that the scaling is mo
fied as

G~E,M !5G~Ec ,M ! f „j~E!/M …, ~4!

wherej(E) is the macroscopic localization length at ener
E and f (x) is a universal function. The size dependence
the conductance maximumG(Ec ,M ) represents the irrel-
evant finite size corrections,

Gs~Ec ,M !5Gc2aM2yirr . ~5!

Utilizing j;uE2Ecu2n, we obtain the expression

FIG. 1. Average conductancêG& in the lowest Landau band
~a! Conductance vs energy forM516, 32, 64, 96, 128, 160, an
192. Normalized conductance as a function of scaled variabx
5uE2EcuM1/n with Ec523.40 andn52.37 for the arithmetic~b!
and the geometric~c! average. The number of samples for each d
point ranges from 50 forM5192 and 10 000 forM516.
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G~E,M !5G~Ec ,M ! f ~ uE2Ecu2n/M !

5G~Ec ,M !F~ uE2EcuM1/n!. ~6!

Should scaling exist in our system as expected, then a
our data for differentE andM would collapse on one curv
provided the correct values ofEc and n are chosen. The
results of such a scaling procedure are shown in Fig. 1~b! for
arithmetic average withEc523.40 and the best fitn52.37.
Scaling behavior is clearly established. Deviation forM
516 and for higher energyE is due to the finite size effec
and the effect of mixing with higher bands, respective
Thus scaling of conductance around the critical points in
cates a critical exponent consistent with a universal valun
5 7

3 . The same scaling is obeyed for the geometric avera
shown in Fig. 1~c! with exactly the same critical exponent

Of central importance is the exact value of the cond
tance at the critical point. As mentioned before, due to
finite size correction from irrelevant fields, the conductan
at the critical point depends on system size. In Fig. 2,
present the arithmetic and geometric averaged conduct
at the critical point,Ec523.40. G(Ec ,M ) increases with
increasing sizeM and will eventually saturate at the critica
conductanceGc for macroscopic systems. This is in contra
to the constant amplitude ratio1 at Ec for the finite size lo-
calization length. We mention that in order to achieve go
statistics, more than 10 000 samples are taken forM up to
160 and 8 000 samples forM5192. To extrapolate to mac
roscopic systems, we have fitted our data to Eq.~5! with a
least square fit~shown as lines in Fig. 3!. The most likely fit
is determined by minimizing thex2 statistics,23

x25(
i

FG~Ec ,Mi !2Gs~Ec ,Mi !

s i
G2

, ~7!

where the summationi is over all the system sizes ands i is
the standard deviation of̂ G(Ec ,M )&. We obtain Gc

FIG. 2. Conductance at the critical point,^G(Ec ,M )&, as a
function of system sizeM for square samples ofM3M . The lines
are least square fits toGs(Ec ,M )5Gc2aM2yirr . The error bars are
smaller than the size of the symbols.
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50.506 andyirr 50.72 as the best fit with a goodness of
Q50.12. Fits withQ larger than 0.1 are believable. We ha
also used the projection method23 to estimate the confidenc
limit. Brackets of @0.499,0.511# and @0.495,0.517# are ob-
tained with a confidence level of 95.4% and 99.73%, resp
tively. Our results agree with the analytical assertion that
universal longitudinal conductanceGc is 1

2 . The difference
between our results for the tight-binding model and t
equally extensive results for the network model,13 if it per-
sists, could indicate that the critical two-terminal condu
tance is not universal. The extrapolated value for the geom
ric average iŝ Gc&g50.438 withyirr 50.52 and a goodnes
of fit Q50.50. An interesting remark is that from the r
ported value of higher moments ofG, we infer that in the
network model, the geometrically averaged conducta
^G&g'0.5.

The distribution of the conductance also shows interes
properties. At the critical point, this distribution is broad a
ranges between 0 and 1. Fluctuations, as measured by
standard deviation, are of the same order of magnitude as
average conductance itself. For localized state, the distr
tion is known to be Poissonlike. At critical points, it has be
proposed that the conductance distribution should be uni
sal independent of the size of the system. This assertio
based on the fact that there is no length scale since the
calization length diverges at the critical point. However, w
know there is non-negligible finite size corrections to t
scaling, as shown in the analysis of theGc . Thus, the con-
ductance distribution at the critical point does show size
pendences@Figs. 3~a!–3~d!#. The probability distribution is
broad, ranging from 0 to 1. It also shows progressive dev
opment of a dip aroundG50 as the whole distribution flat
tens. For two-dimensional~2D! systems, analytical descrip
tions of the statistical distribution of the conductance a
lacking. Eventually for very large sizes, the distribution sa

FIG. 3. Distribution of the conductanceG at the critical point
Ec523.40 for different sample sizes.~a! M516, ~b! M532, ~c!
M564, and~d! M5128. Each size has more than 10 000 samp
Distributions atM5192 ~not shown here! are almost identical with
that of M5128 within the statistical fluctuation.
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rates to the final, presumably universal, distribution for m
roscopic systems. Calculation of higher moment of the c
ductance,^Gn&, results in values 0.08, 0.013, 0.003, a
0.001 for n52, 4, 6, and 8, respectively. These valu
closely resemble the results reported by Wanget al.13 The
probability distribution at the 2D quantum critical point
quite different from that of the 3D systems16,17. We also
point out that the distribution in lnG, although not Gaussian
.

n,

v

-
-
has much better central tendency. The universality of th
distributions will be examined in future work.
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